Data-Driven Sparse Sensor Placement
نویسندگان
چکیده
Optimal sensor placement is a central challenge in the design, prediction, estimation, and control of high-dimensional systems. High-dimensional states can often leverage a latent low-dimensional representation, and this inherent compressibility enables sparse sensing. This article explores optimized sensor placement for signal reconstruction based on a tailored library of features extracted from training data. Sparse point sensors are discovered using the singular value decomposition and QR pivoting, which are two ubiquitous matrix computations that underpin modern linear dimensionality reduction. Sparse sensing in a tailored basis is contrasted with compressed sensing, a universal signal recovery method in which an unknown signal is reconstructed via a sparse representation in a universal basis. Although compressed sensing can recover a wider class of signals, we demonstrate the benefits of exploiting known patterns in data with optimized sensing. In particular, drastic reductions in the required number of sensors and improved reconstruction are observed in examples ranging from facial images to fluid vorticity fields. Principled sensor placement may be critically enabling when sensors are costly and provides faster state estimation for low-latency, high-bandwidth control.
منابع مشابه
Quasi Random Deployment Strategy for Reliable Communication Backbones in Wireless Sensor Networks
Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertak...
متن کاملEnvironment Identification in Flight using Sparse Approximation of Wing Strain
This paper addresses the problem of identifying different flow environments from sparse data collected by wing strain sensors. Insects regularly perform this feat using a sparse ensemble of noisy strain sensors on their wing. First, we obtain strain data from numerical simulation of a Manduca sexta hawkmoth wing undergoing different flow environments. Our data-driven method learns low-dimension...
متن کاملDesign and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks
Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...
متن کاملDesign and evaluation of two distributed methods for sensors placement in Wireless Sensor Networks
Adequate coverage is one of the main problems for distributed wireless sensor networks and The effectiveness of that highly depends on the sensor deployment scheme. Given a finite number of sensors, optimizing the sensor deployment will provide sufficient sensor coverage and save power of sensors for movement to target location to adequate coverage. In this paper, we apply fuzzy logic system to...
متن کاملUAV Data Mule Vehicle Routing Problems In Sparse Sensor Networks
UAV Data Mule Vehicle Routing Problems In Sparse Sensor Networks by Jason Tony Isaacs Recent advances in technology have enabled the use of wireless sensor networks for environmental monitoring and surveillance. Wireless sensor networks are particularly beneficial for monitoring environments that are unsuitable for human presence, such as those arising in the monitoring of permafrost, volcanos,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1701.07569 شماره
صفحات -
تاریخ انتشار 2017